

○Driver系列 IGBT 驱动器 6AP0115T12-Qxx 说明书

深圳青铜剑科技股份有限公司

地址:深圳市南山区高新区南区南环路 29号

留学生创业大厦二期 22 楼

邮编: 518057

电话: 0755-33379866 传真: 0755-33379855

网址: http://www.qtjtec.com 邮箱: support@qtjtec.com

前言

概述

本文档适用的产品是: 6AP0115T12-Qxx 驱动器。

本文档对 6AP0115T12-Qxx 驱动器进行介绍,用以指导用户对 6AP0115T12-Qxx 驱动器进行使用,并在该驱动器基础上更方便快捷的进行各种功率变换器产品的设计。

阅读对象

本文档主要适用于以下工程师:

- 系统设计工程师
- 结构工程师
- 硬件工程师
- 测试工程师

内容简介

本文档包含 5 章, 内容如下:

章节	内容
1 产品概述	简要介绍驱动器的特点和保护功能。
2 技术规格	介绍驱动器的基本电气参数和接口定义。
3 功能描述	介绍驱动器的供电电源、PWM 输入信号、逻辑输出信号、短路保护功能、欠压保护功能、Vce 电压监测功能以及 NTC 检测功能
4 使用步骤	介绍驱动器的选择、连接、装配和测试等主要使用步骤。
5 外观尺寸	介绍驱动器的外观图和机械尺寸。

目录

1	产品概述	1
2	技术参数	2
	2.1 极限值	2
	2.2 电气特性	3
	2.3 电源及电气隔离	3
	2.4 接口定义	4
3	功能描述	5
	3.1 电源	5
	3.2 PWM 输入信号	5
	3.3 逻辑输出信号	5
	3.4 短路保护功能	5
	3.5 欠压保护功能	7
	3.6 母线电压监测功能	7
	3.7 NTC 检测功能	8
4	使用步骤	9
	选择合适的驱动器	9
	将驱动器连接到 IGBT 模块上	9
	将驱动器连接到控制器	9
	检查驱动器门极输出	9
	装配和测试	10
г	扣₩□→	10

1 产品概述

6AP0115T12-Qxx 驱动板是针对 EconoDUAL™3 封装 IGBT 模块 FF600R12ME4 设计的一款三相即插即用型驱动器,三个模块之间的间距为9.5mm,适用于同为EconoDUAL™3 Drive Module 封装、电压等级 1200V 及以下的汽车级 IGBT 模块,可安全可靠的驱动和保护 IGBT 模块。

图 1 6AP0115T12-Qxx 驱动器

6AP0115T12-Qxx 是一款专用汽车级的即插即用驱动器,其主要特点及功能如下:

- 兼容 12V, 15V, 24V 电源输入
- 六通道驱动
- 完整的隔离 DC/DC 电源
- 单通道输出功率为1W,峰值电流±15A
- 原边及副边欠压保护功能
- 退饱和检测短路保护功能
- 软关断保护功能
- NTC 电压和母线电压检测功能

2 技术参数

2.1 极限值

表一 极限值

符号	参数	数值	单位
V_{CC}	电源电压	38	V
V_{TOT}	副边总电压	25	V
I_{G}	峰值驱动电流	±15	A
P _{DC/DC}	单通道最大输出功率	1	W
PWM	PWM 逻辑信号最大输入电压		V
V _O (FAULT)	故障信号最大输出电压	5	V
I _{OC} (FAULT)	故障信号最大输出电流	5	mA
V _{CE MAX}	V _{CE MAX} 最大 IGBT 电压		V
fs	开关频率	10	kHz
$T_{ m Wmax}$	最高工作温度	105	$^{\circ}$
T _{STOmax}	T _{STOmax} 最高储存温度		${\mathbb C}$
$T_{ m Wmin}$	最低工作温度	-40	$^{\circ}$
$T_{ m STOmin}$	最低储存温度	-45	$^{\circ}$

2.2 电气特性

若无特别说明,测试条件为T=25 °C, VCC = $4.9 \sim 36$ V。

表二 基本电气特性参数

符号	参数	最小值	典型值	最大值	单位
I_{DC}	空载输入电流	110			mA
	6AP0115T12-Q15 供电电压	14.5	15	15.5	V
V_{CC}	6AP0115T12-Q12 供电电压	6		18	V
	6AP0115T12-Q24 供电电压	18		32	V
I_{DD}	逻辑信号输入电流		7	9	mA
fs	开关频率	0	10		kHz
$T_{pd \ on}$	开通延迟时间		160		ns
$T_{pd\;off}$	关断延迟时间		220		ns
D	占空比	0		100	%
V _{CE sat}	V _{CE sat} 监控的参考电压	7.2	7.8	8.3	V
V_{GON}	输出门极开通电压		15.0		V
V_{GOFF}	输出门极关断电压		-10.0		V
V_{UVLO}	副边欠压保护值	11.7	12.3		V
V UVLO	副边欠压恢复值		12.8	13.5	V
Тор	工作温度	-40		105	$^{\circ}$
T _{STO}	存储温度	-40		125	°C

2.3 电源及电气隔离

6AP0115T12-Qxx 内部集成了 DC-DC,可实现原边电源和副边电源的隔离。驱动内部电路可实现进行驱动门极信号的传输,同时芯片可提供短路保护和欠压保护。此外,驱动器内部还可以实时监测 IGBT上的 NTC 温度,通过将温度信号转换为电压信号供客户使用。驱动器原边副边满足 4.0KV 绝缘耐压。

2.4 接口定义

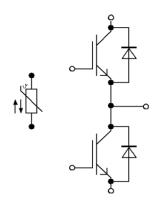


图 2 FF600R12ME4 内部拓扑结构

表三 电气信号接口 P1 定义

引脚	名称	功能	编号	名称	功能
A1	VCC	4.9~36V 电源电压	B1	NC	悬空
A2	GND	电源&信号地	B2	NC	悬空
A3	NC	悬空	В3	GND	电源&信号地
A4	PZ	W相B通道PWM信号输入	B4	PY	U相B通道 PWM 信号输入
A5	PX	V相B通道 PWM 信号输入	B5	GND	电源&信号地
A6	TEMP_U	U相IGBT NTC输出信号	В6	UDC	母线电压检测输出信号
A7	NC	悬空	В7	VCC	4.9~36V 电源电压
A8	NC	悬空	В8	GND	电源&信号地
A9	+5V	+5 电源电压	В9	+5V	+5 电源电压
A10	GND	电源&信号地	B10	PW	W相A通道PWM信号输入
A11	PV	V相A通道 PWM 信号输入	B11	PU	U相A通道 PWM 信号输入
A12	GND	电源&信号地	B12	TEMP_V	V相IGBT NTC输出信号
A13	TEMP_W	W相IGBT NTC输出信号	B13	FAULT	故障输出

3 功能描述

本使用说明按照驱动电路上由原边到次边的顺序,亦即由电源、信号输入侧到 IGBT 连接侧的顺序对 6AP0115T12-Qxx 驱动器的工作方式进行描述。

3.1 电源

6AP0115T12-Qxx 内部采用 DC/DC 开关电源隔离模块,需要一路 $4.9\sim36V$ 电源电压为副边的每个通道提供驱动 IGBT 开关的+15V 电源和-10V 电源电压; 另外还需一路+5V 电源给其他芯片供电,因此, 6AP0115T12-Qxx 需要提供 8-32V 的 3 驱动电源及+5V 信号电源。

3.2 PWM 输入信号

PWM 信号:提供电气信号接口,PU为U相A通道PWM输入信号,PY为U相B通道PWM输入信号,PV为V相A通道PWM输入信号,PX为V相B通道PWM输入信号,PW为W相A通道PWM输入信号,PZ为W相B通道PWM输入信号。

6AP0115T12-Qxx 的工作模式为直接模式,即输入的六路信号是相互独立的;

6AP0115T12-Qxx 的 PWM 输入信号允许的高电平幅值为+15V, 低电平幅值为 0V;

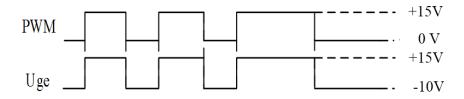


图 3 PWM 输入和 IGBT 门极输出时序图

3.3 逻辑输出信号

6AP0115T12-Qxx 驱动板对应的 6 个单通道的故障信号集合为一个故障信号输出。驱动板正常工作时,故障信号 FAULT 输出高电平 5V,当驱动板检测到欠压保护或短路保护故障时,FAULT 会被拉为低电平 0V。

3.4 短路保护功能

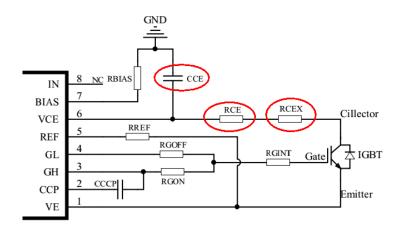


图 4 采用 RC 网络进行短路保护检测

6AP0115T12-Qxx 各个通道利用 IGBT 退饱和效应来检测 IGBT 开通时的 V_{CESAT} 饱和导通压降,并与芯片内部设置的参考值 V_{REF} 进行比较判断是否发生短路。

如图 4 所示,驱动板采用 RC 网络来检测 V_{CE} 。当 IGBT 关断时,芯片 QD2011 内部逻辑会将 V_{CE} 端口下拉至低电平,这样能保证驱动器不会在 IGBT 关断的时候进行短路保护,此时 $V_{CE} < V_{REF}$,驱动板不会误报故障。当 IGBT 正常开通时,IGBT 集电极 C 相对于发射极 E 的电压 V_{CE} 会逐渐降低到 IGBT 本身的 V_{CESAT} 饱和导通压降,并通过电阻 R_{CE} 和 C_{CE} 充电,直到 $V_{CE} = V_{CESAT}$ 但仍小于 V_{REF} ,驱动板不会误报故障。

当 IGBT 发生短路时,IGBT 集电极 C 相对于发射极 E 的电压 V_{CE} 将承受母线电压 U_{DC} ,并通过电阻 R_{CE} 和 R_{CEX} 充电,使芯片的 V_{CE} 一直增大,当超过设置的参考电压 V_{REF} ,驱动板的 FAULT 会被拉低,报出故障信号。为避免短路关断时,IGBT 承受过高的关断应力损坏,驱动板在检测到短路故障后会进入软关断过程。

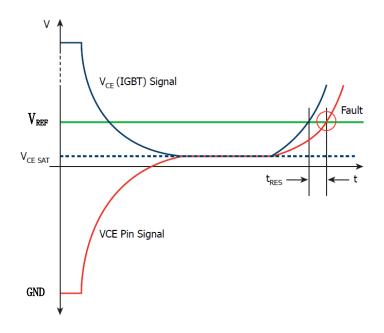


图 5 短路保护原理

3.5 欠压保护功能

6AP0115T12-Qxx 驱动器 6个通道的副边都分别有电源欠压监控电路。

在某通道副边电源发生欠压时,该通道将输出负电压将 IGBT 保持在关断状态,故障信号将会被传送到对应的 SOx 输出上(下拉到 GND),经过一个阻断时间后,该 SOx 信号将自动复位(上拉为+5V)。 驱动器内部将六路故障信号并为一路 FAULT 信号输出,当一路为低时,FAULT 信号输出低(下拉到 GND)

在供电电压较低时,驱动器可为 IGBT 门极到发射极提供低阻通道。

3.6 母线电压监测功能

6AP0115T12-Qxx 对 W 相的母线电压 UDC 进行了监测。当 UDC 电压超过 800V 后,驱动板会检测出一个输出电压 U_{DC} =4.96V,用户可以根据这个电压信号来适当调整母线电压,避免 IGBT 进一步承受过高的电压而发生 CE 极击穿损坏现象。

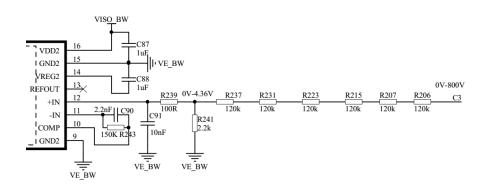


图 6 母线电压采样原理

如图 6 所示通过 VDC 端输入母线电压,+IN 端输入电压对应输入的母线电压的公式为:

+IN=VDC*2.2K/722.2K

EAOUT 输出电压跟随输入电压+IN,+IN 端的电压输入范围是 OV-2.4V, EAOUT 通过运放放大后输出,输出电压大小可调, U_{DC} 计算公式为:

 U_{DC} =EAOUT* (1+R236/R244) =2*EAOUT

表四 测试典型值

母线电压值	UDC 输出值
800V	4.96V
600V	3.74V
300V	1.68V
100V	0.65V

3.7 NTC 检测功能

如图 2 所示,IGBT 模块 FF600R12ME4 内部有 1 个 NTC 电阻。6AP0115T12-Qxx 内部 NTC 检测电路会分别采集三个 IGBT 上 NTC 电阻的电压,当温度升高,NTC 电阻的阻值变低时,驱动板采集的 NTC 电阻上的电压值会变大,经过其他电路的处理,隔离输出 3 个 IGBT 电阻上最大的电压值 $V_{\rm NTC}$ 。

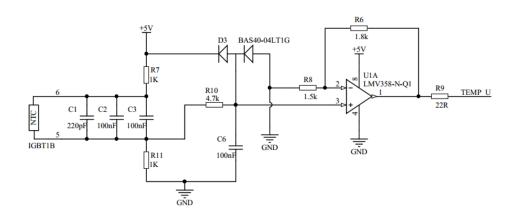


图 7 NTC 采样电路

如图 7 为 NTC 检测电路, 电压 VNTC 由 IBGT 的 NTC 阻值决定, NTC 阻值由 IGBT 工作温度决定, VNTC 电压计算公式为:

 $V_{NTC}=5V*1K/(1K+1k+R_{NTC})$

VNTC 通过运放放大后输出,输出电压大小可调,TEMP_U的计算公式为:

 $TEMP_U = V_{NTC}* (1+R6/R8)$

表五 测试典型值

温度/℃	<u> 实测值/V</u>		误差值/V
10	0.915	0.917	-0.002
20	1.444	1.447	-0.003
30	1.862	1.864	-0.002
40	2. 198	2.200	-0.002
50	2.745	2.750	-0.005
60	3. 141	3. 143	-0.002
70	3. 328	3.333	-0.005
80	3.895	3.901	-0.006
90	4. 294	4.297	-0.003
100	4. 377	4.382	-0.005
110	4.600	4.603	-0.003
120	4.710	4.721	-0.011

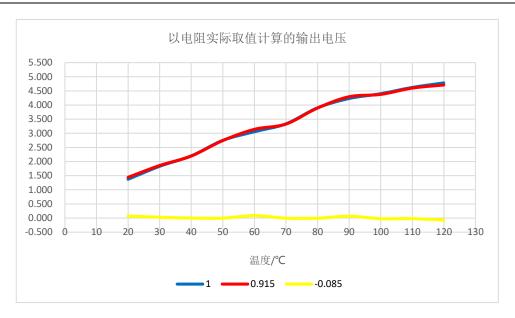


图 8 温度输出曲线

注: 1:蓝色线指理论值; 0.915: 红色线指实际值; -0.085: 黄色指误差值。(1、0.915、-0.085 数字 无实际意义)

4 使用步骤

下列步骤说明如何在功率变换器中正确使用 6AP0115T12-Qxx 驱动器。

选择合适的驱动器

应用 6AP0115T12-Qxx 驱动器时,请注意它只适用于 1200V 及以下的 IGBT 模块。

如果不需要并联 IGBT 模块,可直接使用 6AP0115T12-Qxx 主驱动器,配合相应的外围电路即可。如需并联,请联系青铜剑科技技术支持。

将驱动器连接到 IGBT 模块上

IGBT 模块和驱动器的任何操作,须符合静电敏感设备保护的通用要求,可参考国际标准 IEC 60747-1,第 IX 章或欧洲标准 EN100015。为保护静电感应设备,应按照规范处理 IGBT 模块和驱动器(工作场所、工具等都必须符合这些标准)。

如果忽略了静电保护要求, IGBT 和驱动器可能都会损坏!

将驱动器连接到控制器

电气接口:连接驱动器与控制板之间的接插件,将驱动器的电源及信号同控制板连接起来。

检查驱动器门极输出

在指定工作频率的工作情况下,检查驱动器原边供电电压约+15V,副边导通电压约+15V,关断电压约-10V。也可在指定工作频率并且不给输入信号的情况下,看驱动器所消耗的电流,确定驱动器无短路现象存在。

除非受实际情况限制不能连接到驱动器门极端,否则在安装前就必须进行这些测试。

装配和测试

启动系统前,需确认各模块安装是否正确,驱动器门极输出是否正常。然后在准备的实际负载下启动,建议设备启动时由轻载到满载的过程慢慢调节测试。或也可根据设备的实际应用情况结合自己的要求进行严格的测试。

注意:对高压的所有手动操作都有可能危及生命,必须遵守相关的安全规程。

5 机械尺寸

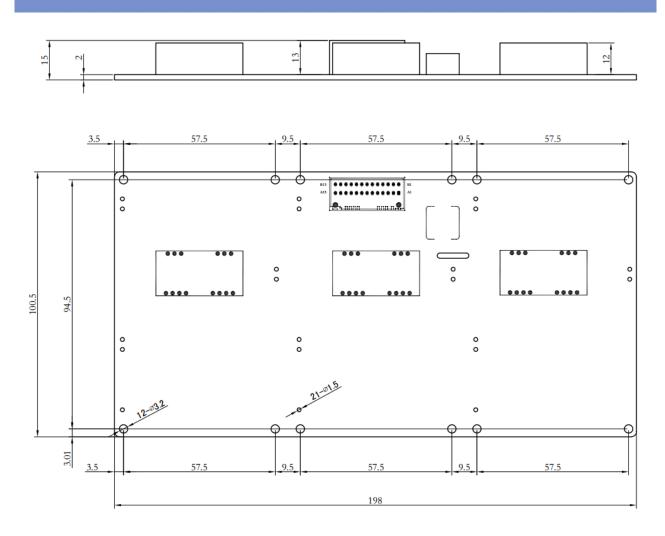


图 9 6AP0115T12-Qxx 驱动器机械尺寸

板子外形尺寸为: 100.5mm×198.0mm; 整体高度为: 15.0mm。

推荐焊孔直径: Ø 1.5mm (47mil) 推荐焊盘直径: Ø 2.5mm (117.5mil)